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Universal energy distribution for interfaces in a random-field environment
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We study the energy distribution functionr(E) for interfaces in a random-field environment at zero tem-
perature by summing the leading terms in the perturbation expansion ofr(E) in powers of the disorder
strength, and by taking into account the nonperturbational effects of the disorder using the functional renor-
malization group. We have found that the average and the variance of the energy for one-dimensional interface
of lengthL behave as,̂E&R}L ln L, DER}L, while the distribution function of the energy tends for largeL to
the Gumbel distribution of the extreme value statistics.
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I. INTRODUCTION

The concept of energy landscapes is of current interes
different topics such as structural glasses, spin glasses,
teins, flux lines, etc.@1–8#. The existence of metastab
states is crucial for the complex behavior in these syste
The domain wall counterpart of the random-field Ising mo
@9# provides an example of the problem which posses
complex properties, and can be quantitatively treated us
the well established analytical methods such as the fu
tional renormalization group~FRG! method @10# and the
method of replica symmetry breaking~RSB! @11#. A signifi-
cant progress has been achieved in recent years in un
standing the behavior of interfaces in disordered media
equilibrium @10# and the driven interfaces at the depinni
transition@12–14#. It is expected that in equilibrium or be
low the depinning transition there are many metastable st
constituting the energy landscape. This makes the inter
problem a natural candidate to study the concepts of en
landscapes. For recent theoretical and numerical studie
the related systems under the perspective of the energy l
scape see Refs.@15–21#. In this paper we present the resu
of the study of the distribution function~DF! of the energy
r(E) for an interface in a random-field environment at eq
librium at zero temperature, i.e., in the ground state. T
main result of this paper is that for large interfacesr(E) is a
universal function which coincides with the Gumbel dist
bution of the extreme value statistics. The dynamic form
ism we use here can be applied to the study of the dyna
quantities such as the relaxation of the energy, the two tim
energy correlation functions, etc., where the complicated
tures of the energy landscape such as metastable state
be probed.

The paper is organized as follows. Section II introduc
the model of elastic interfaces in a disordered medium
Sec. III the energy DF for interfaces in a random field en
ronment at zero temperature is obtained by summing
leading terms in the perturbation expansion. In Sec. IV
nonperturbational effects of the disorder are taken into
count by using the FRG. Section V contains discussion
our results and elucidates their connection with the extre
value statistics. Final section contains our conclusions.
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II. MODEL AND FORMALISM

The interface motion in a disordered medium atT50 is
described by the equation

m21
]z~x,t !

]t
5g¹2z1F1g~x,z!, ~1!

wherem is the mobility,g is the stiffness constant, andF is
the driving force density. The quenched random forceg(x,z)
is assumed to be Gaussian distributed with the zero m
and the second cumulant^g(x,z)g(x8,z8)&5dd(x2x8)D(z
2z8), where d is the interface dimension. To make th
model well defined one has to introduce the cutoffL0

21 in
the dd(x) function at scales of order of the impurity separ
tion or other microscopic scales. We restrict our consid
ation to the case of random-field disorder when the correla
D(z)5D(2z) is a monotonically decreasing function ofz
for z.0 and decays rapidly to zero over a finite distancea.

It is well known that the Langevin equation~1! can be
reformulated in terms of the Fokker-Planck equation for
conditional probability densityP„z(x),t;z0(x),t0

… to have
the profilez(x) at time t by having the profilez0(x) at time
t0. This Fokker-Planck equation can be written as an integ
equation, which, for an interface of a finite lengthL, reads

P~z,t;z0,t0!5P0~z,t;z0,t0!2mE
t0

t

dt8E Dz8P0~z,t;z8,t8!

3(
k8

]z
k8
8 gk8~z8!P~z8,t8;z0,t0!, ~2!

where zk5*ddxz(x)exp(2ikx) and gk(z)
5*ddx exp(2ikx)g(x,z), @k5(k1 , . . . ,kd),ki52p j i /L, j i
50,61, . . .# are the Fourier transforms of the interfac
height and the quenched force, respectively.*Dz in Eq. ~2!
stays for integrations over the modesz[$zk%. The bare con-
ditional probability reads

P0~z,t;z0,t0!5)
k

d@zk2zk
0exp„2gmk2~ t2t0!…#

3d@z02z0
02mF~ t2t0!#. ~3!
©2003 The American Physical Society15-1
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Analogous to the case of one Brownian particle@22# the
formal solution of Eq.~2! averaged over disorder can b
represented as a path integral

Pav~z,t;z0,t0!5E
z(x,t0)5z0(x)

z(x,t)5z(x)

DzE Dpexp~2S!, ~4!

where the ‘‘action’’S5S01Si is given by

S052 i E
t0

t

dt8E ddxp~x,t8!

3@m21]z~x,t8!/]t82g¹2z~x,t8!2F#, ~5!

Si5
1

2Et0

t

dt8E
t0

t

dt9E ddxp~x,t8!

3D@z~x,t8!2z~x,t9!#p~x,t9!, ~6!

with p(x,t) being the momentum~response field! conjugated
to the interface heightz(x,t). Notice that the correct math
ematical definition of the path integral~4! is given through
its discretized version.

III. ENERGY DISTRIBUTION

We now will consider the probability DF of the total en
ergy of the elastic interfaceE(z)5Eel(z)1Edis(z), which
can be split into the elastic energy Eel(z)
5(g/2)*ddx(¹z)2 and the disorder energyEdis(z)
52*ddx*0

z(x)dz8g(x,z8). The energy DF can be calculate
using the conditional probability densityP„z(x),t;0,0… as
follows:

r„E~ t !…5E Dz~x!d„E2E~z!…P„z~x!,t;0,0…. ~7!

The calculation of DF~7! requires in general summations
infinite series of Feynman diagrams, which can be classi
by the number of loops. To the lowest order we take in
account only one-loop diagrams, which contain one integ
tion over an internal momentum. The loop expansion p
vides the bare expression for the energy DF, which will
further improved by using the renormalization gro
method.

It is convenient instead ofr„E(t)… to consider its Fourier
transform r̂(s) ~characteristic function! which is obtained
from Eq. ~7! as

r̂~s!5 (
n50

`
~2 is!n

n!
^En~ t !&

5 (
n50

`
~2 is!n

n! (
m50

n

Cn
m^Eel

m~ t !Edis
n2m~ t !&, ~8!

where Cn
m5n!/ „m!(n2m)! … denotes the binomial coeffi

cient. In this paper we will restrict ourselves to the study
the energy DF in the steady state, i.e., fort→`. In this limit
^Eel

mEdis
n2m& is related to the static equilibrium correlatio

function
05611
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^z~x1!z~x2!&5 lim
t→`

E Dz~x!z~x1!z~x2!P„z~x!,t;0,0…

5E
k

D~0!

~gk2!2
eik(x12x2). ~9!

Let us first elucidate the computation of thenth moment
of the elastic energy, which can be used to calculate
probability DF of the elastic energy. ExpressingEel through
the Fourier components of the interface heightz(x) we ob-
tain

^Eel
n &5S g

2D nE DzE
k1

k1
2uzk1

u2•••E
kn

kn
2uzkn

u2P~z,t;0,0!.

~10!

For an interface of a finite sizeL the integral*k means
L2d(k . To compute Eq.~10! to the lowest order in disorde
strength we iterate Eq.~2! 2n times and insert it into Eq.
~10!. Expecting that the steady state does not depend on
initial interface configuration we have taken the latter in E
~9! and~10! to be flat att050. The average over the rando
forces, which is carried out by using the Wick theore
yields connected and disconnected expressions. The
nected expression contains only one integration overk, while
the number of integrations overk in a disconnected expres
sion is equal to the number of connected parts in that exp
sion. Let us consider the calculation of the connected par
^Eel

n &. As a result of integrations by parts in Eq.~10! with
P(z,t;0,0) being iterated 2n times the 2n derivatives with
respect tozk

i8
8 @see Eq.~2!# will act on zki

in Eq. ~10!. This

has the consequence that pairs of 2n momentak18 , . . . ,k2n8
associated with the right-hand side of Eq.~2! ~being iterated!
become consecutively equal to one ofk1 , . . . ,kn in Eq. ~10!.
There exist (2n)! such possibilities. The factor 1/(2n)! re-
sults from getting rid of 2n ordered time integrations in
P(z,t;0,0). The number of possibilities to get a connect
loop diagram is shown in Fig. 1 withn continuous lines is
2n21(n21)!. Integrations overx1 , . . . ,x2n21 arising from
the above expression ofgk(z) provides that the momenta o
the modes being connected by a dashed line, which is a
ciated with the disorder correlator, become equal. The in
gration overx2n gives the factorLd. The intermediatezk8 are
zero for flat initial interface configuration due tod functions
in Eq. ~3!. As a result the arguments of disorder correlato

FIG. 1. The loop expansion of connected diagrams contribu
to the energy distribution function.
5-2
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D(z) become zero. Collecting all combinatorial facto
1/(2n)! •(2n)! •2n21(n21)!52n21(n21)! and taking the
limit t→` we find the following expression of the connect
part of ^Eel

n &

1

n!
^Eel

n &c5
1

2n
D~0!ng2nLdE

k

1

~k2!n
. ~11!

The moment of the elastic energy^Eel
n & is expressed through

the connected moments according to

1

n!
^Eel

n &5(
1

m1! ¯ mN!
S ^Eel

n1&c

n1!
D m1

¯ S ^Eel
nN&c

nN!
D mN

,

where summations occur overni .0 andmi>0 fulfilling the
conditionn1m11 ¯ 1nNmN5n. As a consequence, the s
ries of the DF of the elastic energyr̂el(s) over the discon-
nected moments is equal to the exponential of the sum o
connected moments~connectivity theorem@23#!

(
n50

`
~2 is!n

n!
^Eel

n &5expS (
n51

`
~2 is!n

n!
^Eel

n &cD . ~12!

The identity~12! can be considered as definition of the c
mulants of the elastic energy. The use of Eq.~11! gives fi-
nally the distribution function of the elastic energy as

r̂el~s!5expS 2
1

2
LdE

k
lnS 11

isD~0!

gk2 D D . ~13!

The computation of̂Eel
mEdis

n2m& to the same order is simi
lar to that of^Eel

n &. Expressing the random potential throug
the force according toV„x,z(x)…[2*0

z(x)dz8g(x,z8) we ar-
rive at

^Eel
mEdis

n2m&5S g

2D mE DzE
k1

k1
2uzk1

u2¯ E
km

km
2 uzkm

u2

3E ddxm11V„xm11 ,z~xm11!…¯

3E ddxnV„xn ,z~xn!…P~z,t;0,0!. ~14!

To compute Eq.~14! to one-loop order we now iterate Eq
~2! n1m times. As a result of integrations by parts in E
~14! the 2m derivatives with respect tozk

i8
8 will act on zki

while the restn-m derivatives will act onV„xi ,z(xi)…. Simi-
lar to the case of the pure elastic energy, the pairs ofm
momenta taken from the momentak18 , . . . ,km1n8 associated
with the iterated Eq.~2! become consecutively equal to on
of k1 , . . . ,km in Eq. ~14!. There exists now (n1m)!/(n
2m)! such possibilities. The factor 1/(n1m)! results from
getting rid ofn1m ordered time integrations inP(z,t;0,0).
Only terms with the first order derivatives ofV with respect
to zk

i8
8 survive after averaging over disorder in the one-lo

approximation, so that the factor (n2m)! results from the
05611
er

differentiation of V. Using the relation*ddx]zk
V„x,z(x)…

52L2dg2k(z) we express allV„x,z(x)… through g2ki
(z)

with 2ki being equal to one of the freen-m momenta asso-
ciated with the iterated Eq.~2!. The following calculation is
identical to that for̂ Eel

n &. Averaging over disorder and col
lecting all combinatorial factors we obtain the connected p
in the form

^Eel
mEdis

n2m&c5
1

2
~22!n2m~n21!!D~0!ng2nLdE

k

1

~k2!n
.

~15!

The use of Eq.~15! in Eq. ~8! yields

1

n!
^En&c5

1

n! (
m50

n

Cn
m^Eel

m~ t !Edis
n2m~ t !&c

5
~21!n

2n
D~0!ng2nLdE

k

1

~k2!n
, ~16!

which can be obtained from Eq.~11! multiplying it with the
factor (21)n. Thus, the expression 1/n! ^En&c is associated
with the loop diagram consisting ofn continuous lines~see
Fig. 1!. The factor 2n in Eq. ~16! is the symmetry number o
the corresponding diagram. The straightforward analy
gives that the expansion~8! can be represented as a series
loop diagrams. The use of the connectivity theorem~12! en-
ables us to write the Fourier transform of the energy DF~8!
as exponential of the series of connected loop diagra
shown in Fig. 1

r̂~s!5expS 2
1

2
LdE

k
lnS 12

isD~0!

gk2 D D . ~17!

Note that r̂(s) given by the diagram series in Fig. 1
closely related to the loop expansion of the effective pot
tial in quantum field theory studied in Ref.@24#. Replacing
the integral in Eq.~17! by the sum according toL*kf (k)
→( j 52`

` f (2p j /L) we find in d51

r̂~s!5)
j 51

`

~11 isE0 / j 2!215
pAisE0

sinh~pAisE0!
, ~18!

where E052D(0)L2/(4p2g) is the characteristic energ
for an interface with the perturbational roughnessw}L3/2 ,
which follows fromw}L (42d)/2 for d51.

Equation ~18! has only simple poless5 i j 2/E0 in the
lower half plane, so that the inverse Fourier transformat
of Eq. ~18! can be easily performed as a sum over all po
by using Jordan’s lemma. As a result we obtain the DF
r(E)5uE0u21f (E/E0), E,0 , where

f ~x!52(
j 51

`

~21!( j 11) j 2e2x j2. ~19!
5-3
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The comparison of Eqs.~11! and ~16! shows that Eq.~19!
describes also the DF of the elastic energy (x5E/uE0u.0)
@see also~13! and ~17!# and the disorder energy (x5E/2E0
.0). This represents a generalization of the virial theor
for average energies to the corresponding probability D
Equation~19! coincides with the dimensionless width DF fo
the one-dimensional random-walk interface studied in R
@25#. Using the method of stationary phase it was shown
Ref. @25# that function ~19! can be well approximated fo
small x by f (x)'Ap/x5(p2/22x)e2p2/4x. Using Eq. ~19!
we have computed the average energy,^E&5p2E0/6, and
the varianceDE5(^E2&2^E&2)1/25p2uE0u/(3A10). Note
that Eq.~19! for the DF of elastic energy is the exact pertu
bational result generalizing the result established by Efe
and Larkin @26# for the height-height correlation function
~9!, which can be readily proved by using supersymme
@27#. Contrary to this, Eq.~19! for the DF of total or disorder
energy has only been proved to one-loop order. Neverthe
both Eqs.~9! and~19! are wrong due to the fact that Eq.~9!
gives the value (42d)/2 for the roughness exponent inste
of the correct Imry-Ma@28# valuez5(42d)/3.

IV. RENORMALIZATION

We now will take into account the effect of the renorma
ization on the energy DF using the results of the FRG@10#.
After integrating out fluctuations in the functional~4! in the
momentum shelll 21,k,L0, where l 21 is the new upper
cutoff, we obtain renormalized quantities which depend
scale l. The corresponding flow equation for the renorm
ized correlator reads@10,12#

dD~z!

dln l
52

l «

8p2g2

d2

dz2 F1

2
D2~z!2D~z!D~0!G , ~20!

where«542d, so thatd54 is the upper critical dimension
The flow takes the correlatorD(z) through a special poin
corresponding to the Larkin scaleLc.@g2a2/D(0)#1/«,
where it acquires a cusp at the originz50. Beyond the Lar-
kin scale the renormalized correlator becomes singular
the perturbation theory breaks down. Nevertheless, the
tends to the nontrivial fixed-point solution

D~ l ,z!58p2g2A2/3l 2z2«D* ~zA21/3l 2z!, ~21!

which controls the large scale behavior. To determine
exponent z one has to consider the integralI D

5*2`
` dzD( l ,z), which is an invariant of the flow equatio

~20!, and I * 5*2`
` dzD* (z). The random field case corre

sponds to the fixed point characterized byI D.0 and I *
5I Dl «23z/(8p2g2A)5const @10,12#, so that z5«/3. Ac-
cording to Eq. ~21! the renormalized disorder correlato
DR(0) acquires in the vicinity of the fixed point the sca
dependencel 2z2«. Taking into account the latter in Eq.~9!
by making the substitutionD(0)→D(0)R5D(0)@k/kc#

«22z

results in^z(x1)z(x2)&}ux12x2u2z, and therefore, gives th
correct value of the roughness exponentz.

To enable a crossover to the perturbational regime
small length scalesl ,Lc we use the ansatz
05611
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DR~0!5D~0!@11~k/kc!
2z2«#21, ~22!

where the wave vectorkc52p/Lc is associated with the Lar
kin length Lc . The ansatz~22! describes the scale depe
dence ofDR(0) at the cusped fixed-point solution of th
disorder correlator,DR(0).D(0)@k/kc#

«22z for k!kc , and
describes the crossover to the perturbational regime,DR(0)
.D(0) for k@kc . Using the renormalizedDR(0) in Eq.
~17! we obtain the Fourier transform of the renormaliz
distribution of the energy ind51 as

r̂R~s!5)
j 51

` S 11
isẼ0

j ~11 j /h!
D 21

, ~23!

where h5L/Lc and Ẽ052D(0)LcL/(4p2g). Similar to
Eq. ~18! the Fourier transform~23! has only simple poless
5 i j (11 j /h)/Ẽ0 in the lower half plane. Carrying out th
inverse Fourier transformation of Eq.~23! by summing over
all poles we obtainrR(E)5uẼ0u21f R(E/Ẽ0 ;h), where the
function f R(x;h) is given by

f R~x;h!5(
j 51

`

~21! j 11
G~ j 1h11!~112 j /h!

G~h11!G~ j !
e2 j (11 j /h)x.

~24!

For string lengths much shorter than the Larkin length,h
!1, the DF~24! passes over to the perturbational result~19!.
Similar to the height-height correlation function at equili
rium we expect that Eq.~24!, which is the result of the renor
malization of Eq.~19! to order « is exact. Equation~24!
applies to order« at the depinning transition too with th
difference that in this case there are corrections to~24! of
order«2. However, we expect that the latter will be small
it is the case for corrections of order«2 to the interface width
distribution at the depinning transition@29#. The average en-
ergy ^E&R derived from Eq.~23! is

^E&R5Ẽ0(
j 51

`
1

j ~11 j /h!

5@C~h11!1C#Ẽ0

.@ ln h1C#Ẽ01O~1/h!}L ln L, ~25!

whereC(x) is the digamma function andC 50.5772 . . . is
Euler’s constant. The calculation of^E&R with the use of DF
~24! leads to an alternating series, the equivalence of wh
to Eq. ~25! has been checked numerically. The energy flu
tuationDER obtained from Eq.~23! reads

DER5uẼ0uFp2

6
1C8~h11!22„C1C~h11!…/hG1/2

.
p

A6
uẼ0u1O~ ln h/h!}L. ~26!

The resultDER}L agrees with the estimate of the energy
using dimensionality arguments with correct roughness
5-4
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ponentz. Note that due to the logarithmic term in Eq.~25!
^E&R and DER scale in different way, and the relative fluc
tuationDER /^E&R disappears as 1/lnL for largeL, which is
in contrast to 1/AL behavior for a Gaussian distribution. Th
latter reflects the relevance of fluctuations over all len
scales. The higher moments of the energy distribution~24!
scale as ^(E2^E&)n&}DER

n . Figure 2 shows f R(x;h),
which is given by Eq.~24!, as a function ofx2 ln h.

We now will consider the asymptotic behavior of~24! in
the limit of long lines,L@Lc . Changingx in favor of x
2 ln h[y and taking the limith→` we calculate the sum
over j in Eq. ~24! and arrive at

f R~y!5P~y![exp„2y2exp~2y!…, ~27!

which is nothing but the Gumbel distribution of the extrem
value statistics@30#. The universality off R(y) is due to the
universal character of fluctuations on large scales, which
described by the fixed-point solution of the FRG@10#. Note
that the expectation value ofy calculated with Eq.~27! gives
Euler’s constantC which is in consistence with Eq.~25! of
the average energy. We have checked that the limit of
distribution f R(x;h) for h→` is insensitive to the details o
the renormalization at scales smaller than the Larkin sca

The Gumbel distribution is one of the three possible lim
distributions in the extreme value statistics@30#, which con-
cerns the distribution of the maximum Mn
5max$j1, . . . ,jn% ~or minimum! of the set of identically
distributed random variablesj i ( i 51,2, . . . ,n). The
asymptotic distributionPn(x) for Mn in limit n→` does not
depend on details of the distribution ofj i and under fulfilling
some conditions@30# has the formPn(x).P(x2 ln n) where
P(y) is given by Eq.~27! @for minimumP(2y)]. The com-
binationy5x2 ln n, wheren is the number of random vari
ables guarantees that the distribution remains invariant
n→`.

Vinokur et al. @16# have used the Gumbel distribution
describe in a phenomenological way the energy barriers
tribution for a flux line in a random environment. The cre

FIG. 2. The renormalized distribution of the energy for a line
a random-field environment. Dashed line:L/Lc5102; solid line: the
Gumbel distribution.
05611
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motion of the flux line in the limit of small driving forceF
and low temperature is controlled by thermally activat
jumps. The thermally activated advance of the flux segm
of length L is controlled by the global barrierU
5max$U1, . . . ,Un%, whereUi is the barrier for the subseg
ment i of length Lc with the number of subsegmentsn
5L/Lc . It was suggested in@16# that the probability distri-
bution for a given segmentL is P„U/Uc2 ln(L/Lc)…, where
Uc.ga2Lc

d22 is the minimum average barrier betwee
neighboring metastable positions of a pinned segmentLc , so
that the typical barrier of a segment of lengthL scales then as
U}Ucln(L/Lc). Bouchaud and Me´zard @19# showed that the
Gumbel distribution describes the energy distribution in
class of random energy models possessing the one-step
The Gumbel and related distributions were used in Ref.@31#,
to describe universal fluctuations in correlated systems
was shown in Ref.@32# that the Gumbel distribution appea
in systems with 1/f power spectra. The Gumbel distributio
applies also in the theory of statistical significance in prot
and DNA sequence analysis@33#.

V. DISCUSSION

We now will discuss the difference between the pertur
tional result for the energy DF~19! and that obtained using
the results of FRG~24!. Further, we will also attempt to
interpret the asymptotic behavior of the energy DF~24!,
which in the limit of long lines coincides with the Gumbe
distribution ~27!, in terms of extreme value statistics. It
known from the treatment of the problem in the framewo
of the replica variational approach@11# that the system unde
consideration demonstrates RSB. The RSB considera
@11# gives the same height-height correlation function a
the same roughness exponentz as the ones predicted by th
FRG, and consequently the same energy DF. The RSB
related to the existence of multiple minima of correspond
Hamiltonian atT50. The failure of the perturbation theor
due to the existence of multiple minima was clarified in t
models of a domain wall in a random field Ising mod
@34,35#. According to Ref.@34# the perturbational result~19!
for the energy DF atT50 can be interpreted as the DF of a
average over all multiple minima~and even maxima! of the
Hamiltonian with the same weights. The latter means that
multiple minima contribute to Eq.~19! independent of their
depths resulting inw}L3/2 and^DE&}L2, which are in con-
trast to the resultsw}L and^DE&}L which are expected to
be exact. The renormalization changes the weights for dif
ent minima, so that the deeper minima are taken into acco
with larger weights. This is in agreement with the result th
the renormalized average energy^E&R}L ln L becomes
lower than that predicted by perturbation theory, and that
energy fluctuation̂DE&R}L becomes smaller. The effect o
the renormalization depends onh5L/Lc , so that the contri-
bution of the lower minima to Eq.~27! will become more
pronounced in the limit of a long line (h→`). Conse-
quently, the fact that the interface will preferentially occu
the lowest energy state, which is the minimum of many ra
dom variables being the local energy minima, is taken i
account in the renormalized DF. Therefore, the energy DF
5-5
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expected to be related to extreme value statistics. The pre
work explicitly shows that the distribution of the energy of
line in a random-field environment is given by the Gumb
distribution.

VI. CONCLUSIONS

We have studied the distribution function of the elast
disorder, and the total energies of an interface in a rand
field environment at zero temperature by summing the le
ing terms of the perturbation expansion in powers of
disorder. The nonperturbational effects of the disorder
taken into account using the FRG method. We have fo
that the average and the fluctuation of the energy for o
,

.

v.

05611
ent

l

,
-

d-
e
re
d
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dimensional interfaces behave as^E&R}L ln L, DER}L,
while the energy DF tends for largeL to a universal function
which coincides with the Gumbel distribution of extrem
value statistics. The more complicated features of the ene
landscape are expected to be probed in considering the
namic quantities such as the two times energy correla
functions, etc., which can be studied by using the pres
method.
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@20# E.T. Seppa¨lä and M.J. Alava, Eur. Phys. J. B21, 407 ~2001!.
@21# L. Balents and P. Le Doussal, e-print cond-mat/0205358.
@22# F.W. Wiegel,Introduction to Path-Integral Methods in Physic

and Polymer Sciences~World Scientific, Singapore, 1986!.
@23# N.N. Bogoliubov and D.V. Shirkov,Introduction to the Theory

of Quantized Fields~Nauka, Moscow, 1984!.
@24# S. Coleman and E. Weinberg, Phys. Rev. D7, 1888~1973!.
@25# G. Foltin et al., Phys. Rev. E50, R639~1994!.
@26# K.B. Efetov and A.I. Larkin, Zh. Eksp. Teor. Fiz.72, 2350

~1977!.
@27# G. Parisi and N. Sourlas, Phys. Rev. Lett.43, 744 ~1979!.
@28# Y. Imry and S.K. Ma, Phys. Rev. Lett.35, 1399~1975!.
@29# A. Rossoet al., Phys. Rev. E68, 036128~2003!.
@30# J. Galambos,The Asymptotic Theory of Extreme Order Stat

tics ~Krieger, Malabar, FL, 1987!.
@31# S.T. Bramwellet al., Phys. Rev. Lett.84, 3744~2000!.
@32# T. Antal, M. Droz, G. Gyo¨rgyi, and Z. Ra´cz, Phys. Rev. Lett.

87, 240601~2001!.
@33# S. Karlin and S.F. Altschul, Proc. Natl. Acad. Sci. U.S.A.87,

2264 ~1990!.
@34# A. Engel, J. Phys.~France! Lett. 46, 409 ~1985!.
@35# J. Villain, J. Phys. A21, L1099 ~1988!.
5-6


