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Universal energy distribution for interfaces in a random-field environment
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We study the energy distribution functigr{E) for interfaces in a random-field environment at zero tem-
perature by summing the leading terms in the perturbation expansigfE)f in powers of the disorder
strength, and by taking into account the nonperturbational effects of the disorder using the functional renor-
malization group. We have found that the average and the variance of the energy for one-dimensional interface
of lengthL behave as,E)g=L InL, AEg=L, while the distribution function of the energy tends for latgt®
the Gumbel distribution of the extreme value statistics.
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I. INTRODUCTION II. MODEL AND FORMALISM

The interface motion in a disordered mediumTat 0 is

The concept of energy landscapes is of current interest idescribed by the equation
different topics such as structural glasses, spin glasses, pro-
teins, flux lines, etc[1-8]. The existence of metastable _,92(x,)
states is crucial for the complex behavior in these systems. M ot
The domain wall counterpart of the random-field Ising model
[9] provides an example of the problem which possesseherep is the mobility, y is the stiffness constant, arfdis
complex properties, and can be quantitatively treated usinghe driving force density. The quenched random farte, z)
the well established analytical methods such as the funds assumed to be Gaussian distributed with the zero mean
tional renormalization grougFRG) method[10] and the and the second cumulafg(x,z)g(x’,z"))=6%(x—x")A(z
method of replica symmetry breakif®SB) [11]. A signifi-  —2z'), whered is the interface dimension. To make this
cant progress has been achieved in recent years in undenodel well defined one has to introduce the cuthff* in
standing the behavior of interfaces in disordered media ahe 6%(x) function at scales of order of the impurity separa-
equilibrium [10] and the driven interfaces at the depinningtion or other microscopic scales. We restrict our consider-
transition[12—14. It is expected that in equilibrium or be- ation to the case of random-field disorder when the correlator
low the depinning transition there are many metastable states(z)=A(—2) is a monotonically decreasing function of
constituting the energy landscape. This makes the interfad®r z>0 and decays rapidly to zero over a finite distance
problem a natural candidate to study the concepts of energy It is well known that the Langevin equatiail) can be
landscapes. For recent theoretical and numerical studies é¢formulated in terms of the Fokker-Planck equation for the
the related systems under the perspective of the energy langonditional probability densityP(z(x),t;z°(x) :(EO) to have
scape see Reff15—21]. In this paper we present the results tge profilez(x) at timet by having the profilez”(x) at time
of the study of the distribution functiofDF) of the energy tv. Th_|s Fokk_er-PIanck e_quatlon can be_ v_vntten as an integral
p(E) for an interface in a random-field environment at equi-€duation, which, for an interface of a finite lengthreads
librium at zero temperature, i.e., in the ground state. The .
main result of thIS paper is t_hat_ for Iarge interfagd&) isa P(z,t;zo,to)zPo(z,t;zo,to)—,uf dt,f Dz2'Py(z,t:2' 1)
universal function which coincides with the Gumbel distri- to
bution of the extreme value statistics. The dynamic formal-
ism we use here can be appl?ed to the study of the dynamic XE azr,gk,(z’)P(z’,t’;z°,t°), 2)
guantities such as the relaxation of the energy, the two times Kook
energy correlation functions, etc., where the complicated fea-
tures of the energy landscape such as metastable states ddpere 2= [ dz(x) exp(~ikx) and 9k(2)
be probed. =Jd%exp(-ik)g(x2), [k=(ky, ... ka),k=2m];/L,j;

The paper is organized as follows. Section Il introduces=0.+1,...] are the Fourier transforms of the interface
the model of elastic interfaces in a disordered medium. Ifeight and the quenched force, respectivé®z in Eq. (2)
Sec. Il the energy DF for interfaces in a random field envi-Stays for integrations over the modes{z}. The bare con-
ronment at zero temperature is obtained by summing théitional probability reads
leading terms in the perturbation expansion. In Sec. IV the
nonperturbational effects of the disorder are taken into ac- .50 10y _ 0 2 0
courﬁ)t by using the FRG. Section V contains discussion of Po(z.tiZt )_l_k[ Az ziExp(— yuk(t= )]
our results and elucidates their connection with the extreme 0 0
value statistics. Final section contains our conclusions. X8l zo—z5— pF(t—t)]. )

=yV?z+F+g(X,2), (1)
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Analogous to the case of one Brownian parti¢®?] the PR 'l_l'l |
formal solution of Eq.(.2) averaged over disorder can be / M + X X +
represented as a path integral
z(x,t) =2z(x)
Pa\,(z,t;zo,to):f sz Dpexp(—S), (4 AN
2(x,19) =2%(x) =
h h S SO S b + + 00
where the “action”S=Sy+ S; is given by \ ’
(| 3 L N 7/
t
Sp=—i fodt’J d9%p(x,t") FIG. 1. The loop expansion of connected diagrams contributing
t

to the energy distribution function.
X[~ Yaz(x,t")ot'—yV2z(x,t')—F],  (5)

(z(X1)Z(X5))=lim f Dz(x)z(X1)z(X5)P(z(x),t;0,0)

1t ' ! " d ’ o
8‘_2 todt Jtodt Jd Xp(x,t") t
XAlz(0t) ~2(x,) Ip(x.t"), © = [ S ek ©
k (vk?)?
with p(x,t) being the momenturresponse fieldconjugated
to the interface height(x,t). Notice that the correct math-  Let us first elucidate the computation of thth moment
ematical definition of the path integréd) is given through  of the elastic energy, which can be used to calculate the
its discretized version. probability DF of the elastic energy. Expressig through
the Fourier components of the interface heigpt) we ob-
I1l. ENERGY DISTRIBUTION tain

We now will consider the probability DF of the total en- y\"
ergy of the elastic interfac&(z) =E¢(z) + Egi(2), which (E2,>=<§) szf k§|zkl|2...f k§|zkn|2P(z,t;0,0).
can be split into the elastic energyEg(2) ke Kn
=(y/2)fd%(Vz)?> and the disorder energyEq(z) (10)
=—[d%JZ¥dz'g(x,z’). The energy DF can be calculated
using the conditional probability densit(z(x),t;0,0) as
follows:

For an interface of a finite sizé the integral [, means
L~93,. To compute Eq(10) to the lowest order in disorder
strength we iterate Eq2) 2n times and insert it into Eq.
(10). Expecting that the steady state does not depend on the
p(E(t))=f Dz(x) S(E—E(2))P(z(x),t;0,0). (7)  initial interface configuration we have taken the latter in Egs.
(9) and(10) to be flat atty=0. The average over the random
The calculation of DR7) requires in general summations of forces, which is carried out by using the Wick theorem,
infinite series of Feynman diagrams, which can be classifiedfields connected and disconnected expressions. The con-
by the number of loops. To the lowest order we take intonected expression contains only one integration @vesile
account only one-loop diagrams, which contain one integrathe number of integrations ovérin a disconnected expres-
tion over an internal momentum. The |00p expansion proSion is equal to the number of connected partS in that expres-
vides the bare expression for the energy DF, which will beSion. Let us consider the calculation of the connected part of
further improved by using the renormalization group{Eg). As a result of integrations by parts in EG.0) with

method. P(z,t;0,0) being iterated 2 times the 21 derivatives with
It is convenient instead qf(E(t)) to consider its Fourier respect tozl’(_, [see EQq.(2)] will act on z, in Eq. (10). This
transformp(s) (characteristic functionwhich is obtained 55 the cor;sequence that pairs of @omentak}, . .. Kj,
from Eq.(7) as associated with the right-hand side of E2). (being iteraten
© . n become consecutively equal to onekef . . . k, in Eq.(10).
HOES (—is) (E"(1)) There exist (2)! such possibilities. The factor 1/(3! re-

n=o Nl sults from getting rid of & ordered time integrations in

P(z,t;0,0). The number of possibilities to get a connected
loop diagram is shown in Fig. 1 with continuous lines is

2" Y(n—1)!. Integrations oveK, ... Xo,_ arising from

the above expression gi(z) provides that the momenta of
where C'=n!/(m!(n—m)!) denotes the binomial coeffi- the modes being connected by a dashed line, which is asso-
cient. In this paper we will restrict ourselves to the study ofciated with the disorder correlator, become equal. The inte-
the energy DF in the steady state, i.e.,fere. In this limit  gration overx,, gives the factot.9. The intermediate, are
(EgiEqis ™ is related to the static equilibrium correlation zero for flat initial interface configuration due #functions
function in Eqg. (3). As a result the arguments of disorder correlators

(—is)"
n!

> CHEZWER M), ®)

=2
n=0
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A(z) become zero. Collecting all combinatorial factors differentiation of V. Using the relationfd’xd, V(x z(x))
1/(2n)!-(2n)!-2""H(n—1)!=2""%(n—1)! and taking the =_|~dg  (7) we express alV(x,z(x)) through g.«.(2)
limit t— oo we find the following expression of the connected with —k; being equal to one of the freem momenta :alsso-
part of (E¢) ciated with the iterated Eq2). The following calculation is
identical to that for Eg). Averaging over disorder and col-
(1)  lecting all combinatorial factors we obtain the connected part

1 n 1 n.—npd
—r(Eede=5-A(0)"y "L

k (KN in the form
The moment of the elastic enerdzg) is expressed through 1
the connected moments according to (== C—_(_z)n—m(n_1)!A(o)ﬂy—n|_df Taxh
k
) 1 (ED™  [(ED (15)
EE|>:E m1! "'mN! nl.l . nN ' . .
The use of Eq(15) in Eq. (8) yields
where summations occur over >0 andm;=0 fulfilling the
conditionn;m; + - -+ + nymy=n. As a consequence, the se- . Z "
ries of the DF of the elastic energy(s) over the discon- H<E >° “=h Cr{Eai(Eds (1)
nected moments is equal to the exponential of the sum over
connected momenigonnectivity theoreni23]) (—n"
= A(0)"y "L : (16)
2n 2\n
S (- Cisy (9
nZO <Eel>_ ex 21 (Eabe (12

which can be obtained from E¢l1) multiplying it with the
factor (—1)". Thus, the expression aY¥(E"). is associated
with the loop diagram consisting a@f continuous linegsee
Fig. 1). The factor 21 in Eq. (16) is the symmetry number of
the corresponding diagram. The straightforward analysis

1 iSA(0) gives that the expansidi®) can be represented as a series of
Pel(S) exp( - ELdf | ( ) ) (13
k

The identity(12) can be considered as definition of the cu-
mulants of the elastic energy. The use of Etfl) gives fi-
nally the distribution function of the elastic energy as

loop diagrams. The use of the connectivity theor@?® en-
ables us to write the Fourier transform of the energy (BF

_ as exponential of the series of connected loop diagrams
The computation of EJEj. ™) to the same order is simi- shown in Fig. 1

lar to that of(E(). Expressing the random potential through

the force according t&/(x,z(x))=— [Z¥dz g(x,z') we ar- A 1 iSA(0)
rive at p(s)=ex ——Ldfln 1- . (17
2 Jx yk?
Y 21, (2. f 21, |2
(EeiFs” (2) fpszlkﬂzl(l' kmkm|zkm| Note thatp(s) given by the diagram series in Fig. 1 is
closely related to the loop expansion of the effective poten-
| % V(X 1 2(X tial in quantum field theory studied in Re{12.4]. Replacing
J’ w1V Cm1,2(Xim--1)) the integral in Eq.(17) by the sum according tt [ f(k)
—2__.f(2mj/L) we find ind=1
xf d%,V(x,,2(X,))P(z,t;0,0). (14
~ . - ) o 1 KIRY iSEO
To compute Eq(14) to one-loop order we now iterate Eq. P(S)_].Hl (1+isEo/j*) i yisEy) (18)
(2) n+m times. As a result of integrations by parts in Eq. 0
(14) the 2m derivatives with respect taki, will act on Z, where Ey= — A(0)L2/(4m2y) is the characteristic energy
while the resin-m derivatives will act o'V (x;,z(x;)). Simi-  for an interface with the perturbational roughnessL®?
lar to the case of the pure elastic energy, the pairsraf 2 which follows fromwec L4~ 92 for d=1.
momenta taken from the momerka, . . . k; ., associated Equation (18) has only simple poles=ij?/E, in the
with the iterated Eq(2) become consecut|ve|y equal to one lower half plane, so that the inverse Fourier transformation
of Ky, ... Ky in Eq. (14). There exists nowr(+ m)!/(n  of Eq. (18) can be easily performed as a sum over all poles

—m)! such possibilities. The factor T+ m)! results from by using Jordan’s lemma. As a result we obtain the DF as
getting rid ofn+m ordered time integrations iR(z,t;0,0).  p(E)=|Eo| f(E/Eo), E<0 , where

Only terms with the first order derivatives ¥fwith respect

to z,, survive after averaging over disorder in the one-loop - : .

N (=23 (~1)0*Dj2e " (19
apprOX|mat|on, so that the facton{ m)! results from the j=1

056115-3



A. A. FEDORENKO AND S. STEPANOW PHYSICAL REVIEW B8, 056115 (2003

The comparison of Eqg11) and (16) shows that Eq(19) Ar(0)=A(0)[1+ (k/ko)2¢]71, (22)
describes also the DF of the elastic energy=€/|Ey|>0)

[see alsq13) and(17)] and the disorder energk&E/2E,  where the wave vectdq,=27/L is associated with the Lar-
>0). This represents a generalization of the virial theorenkin length L.. The ansatA22) describes the scale depen-
for average energies to the corresponding probability DFsdence of Ag(0) at the cusped fixed-point solution of the
Equation(19) coincides with the dimensionless width DF for disorder correlatorAg(0)=A(0)[k/k.]?~%¢ for k<k., and
the one-dimensional random-walk interface studied in Refdescribes the crossover to the perturbational regimg0)
[25]. Using the method of stationary phase it was shown in=A(0) for k>k. . Using the renormalizedg(0) in Eq.
Ref. [25] that function(19) can be well approximated for (17) we obtain the Fourier transform of the renormalized
small x by f(x)=~Ja/x3(722—x)e" "™ Using Eq.(19) distribution of the energy inl=1 as

we have computed the average enerdy)=m°Ey/6, and " . 1

the varianceAE= ((E?)—(E)?)¥?= 72|E,|/(3/10). Note 59 =11 <1+ ISEg ) 23
that Eq.(19) for the DF of elastic energy is the exact pertur- Pr j= iA+jln))

bational result generalizing the result established by Efetov

and Larkin[26] for the height-height correlation functions where »=L/L, and NEo:—A(O)LcL/(47727)- Similar to
(9), which can be readily proved by using supersymmetryeq. (18) the Fourier transforni23) has only simple poles
[27]. Contrary to this, Eq(19) for the DF of total or disorder =ij(1+]j/7)/E, in the lower half plane. Carrying out the

energy has only been proved to one-loop order. Neverthelesg, arse Fourier transformation of E€3) by summing over
both Egs.(9) and(19) are wrong due to the fact that E(@) ®3 by 9

gives the value (4 d)/2 for the roughness exponent instead
of the correct Imry-Md 28] value {=(4—d)/3.

all poles we obtairpr(E)=|Eo| *fr(E/Ey;7), where the
function fr(X; n) is given by

T(j+7n+1)(1+2j/7)
F'(n+DT())

We now will take into account the effect of the renormal- (24)
ization on the energy DF using the results of the FRG].
After integrating out fluctuations in the function@) in the ~ For string lengths much shorter than the Larkin lenggh,
momentum shell "1<k<A,, wherel ! is the new upper <1, the DF(24) passes over to the perturbational re¢ii§).
cutoff, we obtain renormalized quantities which depend orSimilar to the height-height correlation function at equilib-
scalel. The corresponding flow equation for the renormal-rium we expect that Eq24), which is the result of the renor-

~i(@+ilmx

IV. RENORMALIZATION fr(X;7)=>, (—1)I*t
=1

ized correlator readsl0,12] malization of Eq.(19) to ordere is exact. Equation24)
applies to ordere at the depinning transition too with the
dA(z) 12 d?[1 5 difference that in this case there are correctiong24) of
dinl 8x2,2 dZ2 74%2)=A(2)A0) |, (20 orders® However, we expect that the latter will be small as

it is the case for corrections of ordef to the interface width
wheree =4—d, so thatd=4 is the upper critical dimension. distribution at the depinning transiti¢@9]. The average en-
The flow takes the correlatak(z) through a special point €9 (E)r derived from Eq(23) is

corresponding to the Larkin scale.=[y?a?/A(0)]", w

where it acquires a cusp at the origin 0. Beyond the Lar- (E) -E 2 1

kin scale the renormalized correlator becomes singular and RO j(+jly)

the perturbation theory breaks down. Nevertheless, the flow _

tends to the nontrivial fixed-point solution =[W(n+1)+C]Eg
A(l,2)=8m2y?AYd2e—e A% (A3 79), (21 =[In 7+ C]Ey+O(1/n)L InL, (25)

which controls the large scale behavior. To determine thevhereW(x) is the digamma function an@ =0.572 ... is

exponent { one has to consider the integral, Euler’s constant. The calculation () with the use of DF
=[”_dzA(l,z), which is an invariant of the flow equation (24) leads to an alternating series, the equivalence of which
(20), and 1*=[*_dzA*(z). The random field case corre- t0 Eq.(25) has been checked numerically. The energy fluc-
sponds to the fixed point characterized by>0 and|*  tuationAEg obtained from Eq(23) reads
:|(Aj|_s—3£/(8é72y(22A1§=r(]:onst [10,1Z|_, sg (tjhat §d=s/3. A(I:- 2 o
cording to Eq. the renormalized disorder correlator o , _

AR(0) acquires in the vicinity of the fixed point the scale ABg=[Bol 6 TV () m2(CH (1)
dependencé?®~®. Taking into account the latter in E¢Q)

by making the substitution (0)— A (0)g=A(0)[k/k.]®%¢ _ T E
results in(z(x;)z(x,) ) |x;—x,|?¢, and therefore, gives the \/§|EO| +O(n ylm)eL. (26)

correct value of the roughness exponént
To enable a crossover to the perturbational regime aThe resultAEgeL agrees with the estimate of the energy by
small length scaleb<L . we use the ansatz using dimensionality arguments with correct roughness ex-
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0,4 motion of the flux line in the limit of small driving forc&

and low temperature is controlled by thermally activated
jumps. The thermally activated advance of the flux segment
of length L is controlled by the global barrierU
=maxXUy, ...,U,}, whereU; is the barrier for the subseg-
ment i of length L. with the number of subsegments
=L/L.. It was suggested ifil6] that the probability distri-
bution for a given segmerit is P(U/U.—In(L/Ly)), where
U= yang’2 is the minimum average barrier between
neighboring metastable positions of a pinned segrhgnso

that the typical barrier of a segment of lengtiscales then as
UxU¢In(L/Ly). Bouchaud and Meard[19] showed that the
Gumbel distribution describes the energy distribution in a
class of random energy models possessing the one-step RSB.
The Gumbel and related distributions were used in R3],

to describe universal fluctuations in correlated systems. It
was shown in Refl.32] that the Gumbel distribution appears
in systems with 1/ power spectra. The Gumbel distribution
applies also in the theory of statistical significance in protein
and DNA sequence analydi33].

0,3 4

0,0

FIG. 2. The renormalized distribution of the energy for a line in
a random-field environment. Dashed lingl .= 10?; solid line: the
Gumbel distribution.

ponent{. Note that due to the logarithmic term in E@5)
(E)g and AER scale in different way, and the relative fluc-
tuation AER/(E)R disappears as 1/Infor largeL, which is V. DISCUSSION
in contrast to 1J/L behavior for a Gaussian distribution. The
latter reflects the relevance of fluctuations over all Iength“O

scales. The higher moments of the energy distribut®® o resuits of FRG(24). Further, we will also attempt to

scale .aS<.(E—<E))">°<AE?z- Figure 2 showsfr(X;7),  interpret the asymptotic behavior of the energy L),
which is given by Eq(24), as a function ok—In 7. _ which in the limit of long lines coincides with the Gumbel
We now will consider the asymptotic behavior @) in  gistribution (27), in terms of extreme value statistics. It is
the limit of long lines,L>L.. Changingx in favor of X known from the treatment of the problem in the framework
—In 7=y and taking the limitp—oc we calculate the sum s the replica variational approaghi] that the system under

We now will discuss the difference between the perturba-
nal result for the energy DFL9) and that obtained using

overj in Eq. (24) and arrive at consideration demonstrates RSB. The RSB consideration
[11] gives the same height-height correlation function and
fr(y) =P(y)=exp(—y—exp(—y)), (27)  the same roughness exponénas the ones predicted by the

FRG, and consequently the same energy DF. The RSB is
which is nothing but the Gumbel distribution of the extremerelated to the existence of multiple minima of corresponding
value statistic§30]. The universality off x(y) is due to the Hamiltonian atT=0. The failure of the perturbation theory
universal character of fluctuations on large scales, which ardue to the existence of multiple minima was clarified in toy
described by the fixed-point solution of the FR®)]. Note  models of a domain wall in a random field Ising model
that the expectation value gfcalculated with Eq(27) gives  [34,35. According to Ref[34] the perturbational resu{tL9)
Euler’s constanC which is in consistence with Eq25) of  for the energy DF aT =0 can be interpreted as the DF of an
the average energy. We have checked that the limit of theverage over all multiple miniméand even maximaof the
distributionfg(x; ) for »— o is insensitive to the details of Hamiltonian with the same weights. The latter means that all
the renormalization at scales smaller than the Larkin scale.multiple minima contribute to E¢(19) independent of their

The Gumbel distribution is one of the three possible limitdepths resulting inve: L2 and(AE)eL?, which are in con-
distributions in the extreme value statist{@], which con-  trast to the resultsv=L and(AE)xL which are expected to
cerns the distribution of the maximum M,  be exact. The renormalization changes the weights for differ-
=maxés, . . ..&nf (or minimum) of the set of identically ent minima, so that the deeper minima are taken into account
distributed random variables§ (i=1,2,...n). The  with larger weights. This is in agreement with the result that
asymptotic distributiorP,(x) for M, in limit n—o does not the renormalized average energ¥)r=LInL becomes
depend on details of the distribution §fand under fulfilling  lower than that predicted by perturbation theory, and that the
some condition$30] has the formP, (x)="P(x—Inn) where  energy fluctuatiof AE)rxL becomes smaller. The effect of
P(y) is given by Eq.(27) [for minimumP(—y)]. The com-  the renormalization depends an=L/L., so that the contri-
binationy=x—Inn, wheren is the number of random vari- bution of the lower minima to Eq27) will become more
ables guarantees that the distribution remains invariant fopronounced in the limit of a long line 7{—=). Conse-
n—oo. quently, the fact that the interface will preferentially occupy

Vinokur et al. [16] have used the Gumbel distribution to the lowest energy state, which is the minimum of many ran-
describe in a phenomenological way the energy barriers disdom variables being the local energy minima, is taken into
tribution for a flux line in a random environment. The creepaccount in the renormalized DF. Therefore, the energy DF is
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expected to be related to extreme value statistics. The preseffiimensional interfaces behave &E)rxL InL, AEgxL,
work explicitly shows that the distribution of the energy of a while the energy DF tends for lardeto a universal function
line in a random-field environment is given by the Gumbelwhich coincides with the Gumbel distribution of extreme
distribution. value statistics. The more complicated features of the energy
landscape are expected to be probed in considering the dy-
VI. CONCLUSIONS namic quantities such as the two times energy correlation

We have studied the distribution function of the elastic,fmugfgfgs’ etc., which can be studied by using the present

disorder, and the total energies of an interface in a random-

field environment at zero temperature by summing the lead-

ing terms of the perturbation expansion in powers of the ACKNOWLEDGMENT

disorder. The nonperturbational effects of the disorder are

taken into account using the FRG method. We have found The support from the Deutsche Forschungsgemeinschaft
that the average and the fluctuation of the energy for onetSFB 418 is gratefully acknowledged.

[1] F.H. Stillinger, Scienc®67, 1935(1995. [17] J.P. Bouchaud and M. f#ard, Physica .07, 174 (1999.

[2] J. Kurchan and C. Laloux, J. Phys.28, 1929(1996. [18] D.S. Fisher, Physica 07, 204 (1997.

[3] S. Takada and P.G. Wolynes, Phys. Re\65:4562(1997. [19] J.P. Bouchaud and M. Mard, J. Phys. /80, 7997(1997).

[4] S. Bichner and A. Heuer, Phys. Rev.@®, 6507(1999. [20] E.T. Seppk and M.J. Alava, Eur. Phys. J. B1, 407 (200)).

[5] L.V. Mikheev, B. Drossel, and M. Kardar, Phys. Rev. L&, [21] L. Balents and P. Le Doussal, e-print cond-mat/0205358.
1170(1995. [22] F.W. Wiegel,Introduction to Path-Integral Methods in Physics

[6] B. Drossel and M. Kardar, Phys. Rev.52, 4841(1995. and Polymer Sciencg$Vorld Scientific, Singapore, 1986

[7] D.A. Gorokhov and G. Blatter, Phys. Rev. Le82, 2705 [23] N.N. Bogoliubov and D.V. Shirkovntroduction to the Theory
(1999. of Quantized Field§Nauka, Moscow, 1984

[8] .M. Kim, M.A. Moore, and A.J. Bray, Phys. Rev.4¥, 2345 [24] S. Coleman and E. Weinberg, Phys. Revz7,[1888(1973.
(199)). [25] G. Foltinet al, Phys. Rev. 50, R639(1994.

[9] T. Nattermann, irSpin Glasses and Random Fieldslited by  [26] K.B. Efetov and A.l. Larkin, Zh. Eksp. Teor. FiZ2, 2350
A.P. Young(World Scientific, Singapore, 1998 (1977.

[10] D.S. Fisher, Phys. Rev. Let6, 1964 (1986. [27] G. Parisi and N. Sourlas, Phys. Rev. L&, 744(1979.

[11] M. Mézard and G. Parisi, J. Phys.28, L1229(1990; J. Phys.  [28] Y. Imry and S.K. Ma, Phys. Rev. Let85, 1399(1975.
I 1, 809(199). [29] A. Rossoet al, Phys. Rev. 68, 036128(2003.

[12] T. Nattermann, S. Stepanow, L.-H. Tang, and H. Leschhorn, J.30] J. GalambosThe Asymptotic Theory of Extreme Order Statis-
Phys. 112, 1483(1992. tics (Krieger, Malabar, FL, 1987

[13] O. Narayan and D.S. Fisher, Phys. Rev4® 7030(1993. [31] S.T. Bramwellet al, Phys. Rev. Lett84, 3744(2000.

[14] P. Chauve, P. Le Doussal, and K.J. Wiese, Phys. Rev.&&tt. [32] T. Antal, M. Droz, G. Gyagyi, and Z. Raz, Phys. Rev. Lett.
1785(2007). 87, 240601(2001).

[15] L. Balents, J.P. Bouchaud, and M. k&d, J. Phys. 6, 1007  [33] S. Karlin and S.F. Altschul, Proc. Natl. Acad. Sci. U.S8Y,
(1996. 2264(1990.

[16] V.M. Vinokur, M.C. Marchetti, and L.-W. Chen, Phys. Rev. [34] A. Engel, J. Phys(France Lett. 46, 409 (1985.
Lett. 77, 1845(1996. [35] J. Villain, J. Phys. A21, L1099 (1988.

056115-6



